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Abstract The problem of finding large complete subgraphs in bipartite graphs (that is,
bicliques) is a well-known combinatorial optimization problem referred to as the maximum-
edge biclique problem (MBP), and has many applications, e.g., in web community discovery,
biological data analysis and text mining. In this paper, we present a new continuous char-
acterization for MBP. Given a bipartite graph G, we are able to formulate a continuous
optimization problem (namely, an approximate rank-one matrix factorization problem with
nonnegativity constraints, R1N for short), and show that there is a one-to-one correspondence
between (1) the maximum (i.e., the largest) bicliques of G and the global minima of R1N,
and (2) the maximal bicliques of G (i.e., bicliques not contained in any larger biclique) and
the local minima of R1N. We also show that any stationary points of R1N must be close
to a biclique of G. This allows us to design a new type of biclique finding algorithm based
on the application of a block-coordinate descent scheme to R1N. We show that this algo-
rithm, whose algorithmic complexity per iteration is proportional to the number of edges in
the graph, is guaranteed to converge to a biclique and that it performs competitively with
existing methods on random graphs and text mining datasets. Finally, we show how R1N is
closely related to the Motzkin–Strauss formalism for cliques.
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1 Introduction

Many real-world applications rely on the discovery of complete bipartite subgraphs, i.e.,
bicliques; for example in web community discovery, biological data analysis and text mining,
see [12,13,16] and the references therein. In fact, in many practical situations, two distinct
groups of objects interact (e.g., Internet users vs. web sites, genes vs. experimental conditions,
and texts vs. words) and one would like to find highly connected pairs of subgroups in these
datasets.

Some algorithms aim at detecting all bicliques, which is computationally challenging. In
fact, there might be an exponential number of such subgraphs [1] and, for large datasets (e.g.,
in web community discovery or in text mining), it might therefore be hopeless to write down
all of them.

Finding instead only the largest biclique(s) is comparatively easier. However, the corre-
sponding optimization problem, called the maximum-edge biclique problem, is NP-hard [15].
In practice, one then often tries to find good but not necessarily optimal solutions, i.e., to find
large or maximal bicliques.

1.1 Outline of the paper

After introducing a formulation for the maximum-edge biclique problem in Sect. 2, we pro-
pose in Sect. 3 a new continuous characterization based on a rank-one matrix approximation
problem with nonnegativity constraints, herein referred to as approximate rank-one non-
negative factorization (R1N). Hence, given a bipartite graph G, we are able to construct an
instance of R1N, namely R1Nd(G), with the following properties:

• The set of global minima of R1Nd(G) coincides with the set of largest bicliques of G
(i.e., the maximum bicliques).
• The set of local minima of R1Nd(G) coincides with the set of bicliques of G not contained

in any larger biclique (i.e., the maximal bicliques).
• Any stationary point of R1Nd(G) is close to a biclique of G.

Building on these facts, Sect. 4 introduces a new type of biclique finding algorithm that relies
on the application of a simple nonlinear optimization scheme (block-coordinate descent) to
R1Nd(G), whose iterations only require a number of operations proportional to the number
of edges of the graph. This method is then compared to a greedy heuristic, to the existing
algorithm of Ding et al. [4] and to the root node level heuristics of the commercial mixed-
integer programming solver Gurobi [11] on some synthetic and text datasets, and is shown
to perform competitively. Finally, we show how our formulation is closely related to the
Motzkin–Strauss formalism for the maximum clique problem [14].

1.2 Notation

The set of m-by-n real matrices is denoted R
m×n ; for A ∈ R

m×n , we denote the i th column
of A by A:i or A(:, i), the j th row of A by A j : or A( j, :), and the entry at position (i, j) by
Ai j or A(i, j); for b ∈ R

m×1 = R
m , we denote the i th entry of b by bi . Notation A(I, J )

refers to the submatrix of A with row and column indices, respectively in I and J . The matrix
AT is the transpose of A. The �2-norm ‖.‖2 is defined as ‖b‖22 = bT b; ‖.‖F is the related
matrix norm called Frobenius norm with ‖A‖2F =

∑
i, j (Ai j )

2. The �1-norm ‖.‖1 is defined as
‖b‖1 =∑

i |bi |. The support of x is denoted supp(x), it is the set of nonzero entries of x . The
cardinality of the set S is denoted |S|. For M ∈ R

m×n , we also let M+ = max(0, M), M− =
max(0,−M), min(M) = mini, j (Mi j ) and ‖M‖2 be the standard matrix 2-norm of M , i.e.,
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‖M‖2 = maxx∈Rn ,‖x‖2=1 ‖Mx‖2 = σmax (M) where σmax (M) is the largest singular value
of M . We note A◦B the component-wise multiplication of matrices A and B with (A◦B)i j =
Ai j Bi j . The inequality M ≥ 0 means that M is component-wise greater or equal to zero, and
for N ∈ R

m×n inequality M ≥ N means that M is component-wise greater or equal than N .
The m-by-n matrix of all ones (resp. zeros) is denoted 1m×n (resp. 0m×n).

2 Maximum-edge biclique problem

A bipartite graph G = (V, E) is a graph whose vertices can be divided into two disjoint sets
V1 and V2 such that there is no edge between two vertices in the same set, with V = V1 ∪ V2

and E ⊆ (V1 × V2). A biclique is a subset of vertices that induce a complete bipartite
subgraph, i.e., a bipartite subgraph where all the vertices are connected by an edge. The
so-called maximum-edge biclique problem in a bipartite graph G is the problem of finding
a biclique in G with maximum number of edges. The corresponding decision problem:
Given B, does G contain a biclique with at least B edges? has been shown to be NP-complete
[15]. Therefore, the problem of finding the biclique with maximum number of edges in G is
at least NP-hard.

Let A ∈ {0, 1}m×n be the biadjacency matrix of the bipartite graph G = (V1 ∪ V2, E)

with V1 = {s1, . . . sm} and V2 = {t1, . . . tn}, i.e., A(i, j) = 1 if and only if (si , t j ) ∈ E . With
this notation, the maximum-edge biclique problem in G can be formulated as follows

maxu,v

∑

i j
uiv j

ui + v j ≤ 1+ Ai j , ∀i, j,
u ∈ {0, 1}m, v ∈ {0, 1}n,

(1)

where ui = 1 (resp. v j = 1) means that node si (resp. t j ) belongs to the solution, ui = 0
(resp. v j = 0) otherwise. The first constraints ensure that if Ai j = 0 then either ui or v j is
equal to zero, i.e., if there is no edge between si and t j then they cannot both belong to a
feasible solution. They are equivalent to the more natural constraints uiv j ≤ Ai j∀i, j , but
present the advantage of being linear. Hence, there is one-to-one correspondence between
the bicliques of G and the feasible solutions of (1).

In the rest of this paper, we will use a more convenient formulation: because A, u and v

are binary, and uiv j ≤ Ai j∀i, j , one can check that
∑

i j

uiv j =
∑

i j

(uiv j )
2 =

∑

i j

Ai j uiv j = ||A||2F − ||A − uvT ||2F = |E | − ||A − uvT ||2F .

Hence (1) can be equivalently reformulated as follows

min
u,v

||A − uvT ||2F
ui + v j ≤ 1+ Ai j , ∀i, j,
u ∈ {0, 1}m, v ∈ {0, 1}n,

(MB(G))

where the objective function counts the number of edges outside the biclique, and its min-
imization is therefore equivalent to maximizing the edges contained in the biclique. Notice
that the optimal objective function value of MB(G) is equal to |E | − |E∗|, where |E∗| is the
size of the largest biclique(s) of G (i.e., the optimal value of (1)). We will be particularly
interested in the

• Maximum bicliques, which are the largest bicliques in G (i.e., of size |E∗|), corresponding
to the optimal solutions of MB(G), and the
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Fig. 1 Graph corresponding to
the biadjacency matrix A from
Eq. (3)

• Maximal bicliques, which are bicliques not contained in any larger biclique.

3 Continuous characterization of the maximum-edge biclique problem

First, let us define the following problem: given an m-by-n real matrix R ∈ R
m×n , find its

best nonnegative rank-one approximation, i.e., solve

min
u∈Rm ,v∈Rn

||R − uvT ||2F such that u ≥ 0, v ≥ 0. (R1N)

From now on, we say that a pair of vectors (u, v) coincides with another pair (u′, v′) if and
only if they correspond to the same rank-one matrix, i.e., if and only if uvT = u′v′T .

Then, given a parameter d ≥ 0, a bipartite graph G and its biadjacency matrix A ∈
{0, 1}m×n , we define the following instance of R1N:

min
u∈Rm ,v∈Rn

||M − uvT ||2F such that u ≥ 0, v ≥ 0, (R1Nd (G))

where M is the matrix A where the zero values have been replaced by −d , i.e.,

Mi j =
{

1 if Ai j = 1
−d if Ai j = 0

, 1 ≤ i ≤ m, 1 ≤ j ≤ n. (2)

Although R1Nd(G) is a continuous optimization problem, we are going to show that for any
d sufficiently large

• Any of its global minimum coincides with a binary optimal solution of the corresponding
(discrete) biclique problem MB(G), and vice versa (Theorem 2).
• Any local minima of R1Nd(G) coincides with a maximal biclique of G, and vice versa

(Theorem 1).
• Any stationary point of R1Nd(G) is close to a biclique of G (Sect. 3.4).

Intuitively, the reason is the following. If a −d entry of M is approximated by a positive
value in R1Nd(G), say p, the corresponding term in the objective function will be equal to
(−d− p)2 = d2+2pd+ p2. As d increases, it becomes more and more costly to approximate
−d by a positive number (because of the 2pd term) and we will show that, for d sufficiently
large, negative values of M have to be approximated by zeros. Since the remaining values of
M (not approximated by zeros) are all ones, the optimal rank-one solutions will be binary,
as in MB(G).

To illustrate this, let us consider the bipartite graph G displayed on Fig. 1, its biadjacency
matrix A, and the corresponding matrix M as defined in Eq. (2) with d = max(m, n) = 3, i.e.,
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Fig. 2 Objective function ||M − u(x, y)v(x, y)T ||F

A =
⎛

⎝
1 0 1
0 1 1
1 1 1

⎞

⎠ , and M =
⎛

⎝
1 −3 1
−3 1 1
1 1 1

⎞

⎠ . (3)

The bipartite graph G contains

• Two maximum bicliques (s2, s3, t2, t3) and (s1, s3, t1, t3), corresponding to the two
optimal solutions of MB(G),

[
u∗ = (0, 1, 1), v∗ = (0, 1, 1)

]
and

[
u′ = (1, 0, 1), v′ =

(1, 0, 1)], respectively.
• Two maximal (but not maximum) bicliques (s3, t1, t2, t3) and (s1, s2, s3, t3) correspond-

ing to the two feasible solutions of MB(G),
[
u† = (0, 0, 1), v† = (1, 1, 1)

]
and [u‡ = (1, 1, 1), v‡ = (0, 0, 1)]

respectively.

Let us now consider R1Nd(G). Without loss of generality, one can impose the norm of u
to be equal to one, with

u(x, y) =
⎛

⎝
x
y√

1− x2 − y2

⎞

⎠ , where

{
x ≥ 0, y ≥ 0
x2 + y2 ≤ 1

.

For u fixed, the optimal solution in v is given1 by

v(x, y) = argminw≥0||M − u(x, y)wT ||F = max
(

0, MT u(x, y)
)

.

Figure 2 displays the surface of the objective function ||M − u(x, y)v(x, y)T ||F with
respect to parameters x and y. We distinguish two global minima:

1 The first-order stationarity condition of R1Nd (G) for variables v is given by v = max
(

0, MT u/||u||22
)

, see

Sect. 3.3. Therefore, local and global minimizers of R1Nd (G) must satisfy this condition, hence they exactly
correspond to the local and global minimizers of the problem in the new variables (x, y).
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1.
[
x∗ = 0, y∗ =

√
2

2

]
with u(x∗, y∗) =

(
0,
√

2
2 ,
√

2
2

)
and v(x∗, y∗) =

(
0,
√

2,
√

2
)

, coin-

ciding with the maximum biclique (u∗, v∗).
2.

[
x ′ =

√
2

2 , y′ = 0
]

with u(x ′, y′) =
(√

2
2 , 0,

√
2

2

)
and v(x ′, y′) =

(√
2, 0,
√

2
)

, coin-

ciding with the maximum biclique (u′, v′).

We also distinguish two local minima
[
x† = 0, y† = 0

]
and

[
x‡ =

√
3

3 , y‡ =
√

3
3

]
: one can

check that they coincide with (u†, v†) and (u‡, v‡), respectively.
In conclusion, we have then observed a one-to-one correspondence between the global

(resp. local) minimizers of R1Nd(G) and the maximum (resp. maximal) bicliques of G.

3.1 Additional definitions and notations

Let G be a bipartite graph, A its biadjacency matrix, and M the matrix defined in Eq. (2)
depending on the parameter d . The pair (u, v) is a stationary point of R1Nd(G) if and only
if it satisfies its first-order optimality conditions, i.e., if and only if

u ≥ 0, μ = (uvT − M)v ≥ 0 and ui μi = 0 ∀i, (4)

v ≥ 0, λ = uT (uvT − M) ≥ 0 and vi λi = 0 ∀i. (5)

Of course, we are only interested in nontrivial solutions and, assuming that u = 0 and v = 0,
one can check that conditions (4)–(5) are equivalent to

u = max

(

0,
Mv

||v||22

)

and v = max

(

0,
MT u

||u||22

)

. (6)

For x ∈ R
n , let us define

B+(x, r) = { y ∈ R
n+ | ||y − x ||2 ≤ r },

the ball centered at x of radius r intersected with the nonnegative orthant. The pair (u, v) is
a local minimum of R1Nd(G) if and only if there exists ε > 0 such that for all u′ ∈ B+(u, ε)

and v′ ∈ B+(v, ε), we have ||M − uvT ||2F ≤ ||M − u′v′T ||2F . The pair (u, v) is a global
minimum of R1Nd(G) if and only if ||M − uvT ||2F ≤ ||M − u′v′T ||2F for all u′ ∈ R

m+ and
v′ ∈ R

n+.
Given a positive real number d , we define the following three sets of rank-one matrices:

• Sd(G), corresponding to the set of nontrivial stationary points of R1Nd(G), i.e.,

Sd(G) = {uvT ∈ R
m×n | (u, v) satisfies (6), u = 0 and v = 0 }.

• Ld(G), corresponding to the set of nontrivial local minima of R1Nd(G).
• Gd(G), corresponding to the set of nontrivial global minima of R1Nd(G).

By definition, Gd(G) ⊆ Ld(G) ⊆ Sd(G).
Let us also define the following three sets of binary rank-one matrices:

• F(G), corresponding to the set of feasible solutions of MB(G), i.e.,

F(G) = {uvT ∈ R
m×n | (u, v) is a feasible for MB(G)}.

• B(G), corresponding to the set of maximal bicliques of MB(G), i.e., uvT ∈ B(G) if and
only if uvT ∈ F(G) and uvT corresponds to a maximal biclique of G.
• H(G), corresponding to the set of maximum bicliques of MB(G), i.e., uvT ∈ H(G) if

and only if uvT ∈ F(G) and uvT corresponds to a maximum biclique of G.
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By definition, H(G) ⊆ B(G) ⊆ F(G).

In the rest of this section, we show that if the graph G contains at least one edge (i.e., if
A = 0), then

• For any d ≥ max(m, n), Gd(G) = H(G), see Theorem 2.
• For any d ≥ max(m, n), Ld(G) = B(G) = Sd(G) ∩ F(G), see Theorems 1 and 3.
• For any d ≥ 2max(m, n)

√|E |, there is a simple rounding operator Φ such that
Φ(Sd(G)) ⊆ F(G), see Sect. 3.4.

3.2 Key lemmas

Throughout this section, we will need several results concerning the following (uncon-
strained) rank-one approximation problem: given a m-by-n real matrix M ∈ R

m×n , find
its best rank-one approximation, i.e., solve

min
u∈Rm ,v∈Rn

||M − uvT ||2F . (R1U(M))

The following lemma is a well-known result concerning R1U(M) see, e.g., [7, Ch. 2].

Lemma 1 The local minima of R1U(M) are global minima. All other stationary points are
saddle points.

We also have that (u, v) is a pair of singular vectors of matrix M with singular value
σ = uT Mv if and only if

σu = Mv, σv = MT u and ||u||2 = ||v||2 = 1,

or, equivalently, if and only if

u = Mv

||Mv||2 and v = MT u

||MT u||2 .

The pair (u, v) is a stationary point of R1U(M) if and only if
(

u
||u||2 , v

||v||2
)

is a pair of singular

vectors of M , and it is an optimal solution if it is associated with the maximum singular value
of M , i.e., ||u||2||v||2 = σmax(M) [9].

We will also need the following Lemma which shows that if the minimum entry min(M)

of matrix M is smaller than the Frobenius norm of the nonnegative part of M , then the best
rank-one approximation of M must contain at least one nonpositive entry.

Lemma 2 For any matrix M such that min(M) ≤ −||M+||F , any optimal solution (u, v) of
R1U(M) is such that uvT contains at least one nonpositive entry.

Proof If M = 0, the result is trivial. Otherwise we have min(M) < 0 since min(M) ≤
−||M+||F . Let (u, v) be an optimal solution of R1U(M) and assume uvT does not contain
any nonpositive entry, i.e., uvT > 0. Since the negative values of M are approximated by
positive ones and since M has at least one negative entry, we have

||M − uvT ||2F > ||M−||2F . (7)

By the Eckart–Young theorem (see, e.g., [9]), the optimal rank-one approximation uvT must
satisfy

||M − uvT ||2F = ||M ||2F − σmax (M)2 = ||M ||2F − ||M ||22 .
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Moreover,

||M ||2F = ||M+||2F + ||M−||2F and ||M ||22 ≥ min(M)2,

hence we have

||M − uvT ||2F ≤ ||M+||2F + ||M−||2F −min(M)2 ≤ ||M−||F
which is in contradiction with Eq. (7) hence we cannot have uvT >0. ��
3.3 Local and global optima of R1Nd(G)

In this section, we show that, for any d ≥ max(m, n), Ld(G) = B(G) and Gd(G) = H(G).

Lemma 3 If G = (V, E) is a bipartite graph with at least one edge and d ≥ √|E |, then
Ld(G) ⊆ B(G).

Proof Let A ∈ {0, 1}m×n be the biadjacency matrix of G with A = 0, and M ∈ {−d, 1}m×n

be defined as in Eq. (2). Let (u, v) be a nontrivial local minimum of R1Nd(G), i.e., uvT ∈
Ld(G). Let us denote the (non-empty) support of u as K = supp(u) and the (non-empty)
support of v as L = supp(v), and define u′ = u(K ), v′ = v(L) and M ′ = M(K , L) to
be the subvectors and submatrix with indexes in K , L and K × L , respectively. Let us also
define G ′ as the bipartite graph whose biadjacency matrix is given by A(K , L). Observe that
(u′, v′) must be a local minimum of R1N(G ′) otherwise (u, v) would not be a local minimum
of R1Nd(G). In fact, the objective functions of these two problems differ only by a constant
factor: we have ||M − uv||2F = ||M ′ − u′v′T ||2F + ||M ||2F − ||M ′||2F . Suppose now there is
a −d entry in M ′, we have

min(M ′) = −d ≤ −√|E | = −||M+||F ≤ −||M ′+||F .

Moreover, (u′, v′) is located in the interior of the feasible domain R
|K |
+ × R

|L|
+ of R1N(G ′)

since it is positive. Therefore, it is also a local minimum of the unconstrained problem,
i.e., it is a local minimum of R1U(M ′). By Lemma 1, this must be a global minimum.
This is a contradiction with Lemma 2: (u′, v′) should contain at least one nonpositive entry
since min(M ′) ≤ −||M ′+||F . Therefore M ′ does not contain any −d entry, and we have
M ′ = 1|K |×|L|.

Since (u′, v′) is a global minimum of R1U(M ′) and M ′ = 1|K |×|L|, we must have u′v′T =
M ′ = 1|K |×|L|. Therefore uvT is binary and coincides with a feasible solution (ub, vb) of
MB(G), implying that uvT ∈ F(G).

It remains to show that uvT ∈ B(G). Assume the pair (u, v) corresponds to a biclique of
G which is not maximal, i.e., without loss of generality ∃i /∈ supp(u) such that (ub + ei , vb)

corresponds to a larger biclique of G where ei is the i th column of the identity matrix. Then
for any 0 < ε ≤ max(v′)−1, one can check that the solution (u + εei , v) is strictly better
than (u, v) for R1Nd(G): in fact, entries of M corresponding to edges contained only in the
larger biclique {i} × L are now approximated by values between 0 and 1 (instead of 0); a
contradiction which implies uvT ∈ B(G). ��

It is interesting to notice that the converse of Lemma 3 above is not true, i.e., B(G) �

Ld(G) for any d ≥ √|E |. For example, with

A =
(

1 1 1 1
1 1 0 1

)

, (8)
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the maximal biclique corresponding to the first row of M , i.e., u = (1, 0) and v = (1, 1, 1, 1)

does not correspond to a local minima of R1Nd(G). In fact, it is not even a stationary point
since, for d = √|E | = √7, we have Mv

||v||22
= (1 0.88)T = u.

However, this holds for any d ≥ max(m, n):

Theorem 1 If G is a bipartite graph with at least one edge and d ≥ max(m, n), then
B(G) = Ld(G).

Proof Because
√|E | ≤ √mn ≤ max(m, n), by Lemma 3, we have Ld(G) ⊆ B(G) for any

d ≥ max(m, n). It remains to show that B(G) ⊆ Ld(G), which is done in Appendix A. ��
Remark 1 (Tightness of the bound) The smallest lower bound on d which guarantees that
B(G) ⊆ Ld(G) is given by max(m, n) − 1. In fact, it is shown in Appendix 6 that for
any d > max(m, n) − 1, B(G) ⊆ Ld(G). Moreover, using the biadjacency matrix from
Eq. (8), one can check that the maximal biclique u = (1, 0) and v = (1, 1, 1, 1) is not a local
minimum of R1Nd(G) for any d < max(m, n)− 1 because Mv

||v||22
= u (since M(2, :)v > 0).

We can now prove that Gd(G) = H(G) for any d ≥ max(m, n), which is straightforward:

Theorem 2 If G is a bipartite graph with at least one edge and d ≥ max(m, n), then
Gd(G) = H(G).

Proof By Theorem 1, any local minimum (u, v) of R1Nd(G) coincides with a feasible
solution (ub, vb) of MB(G) corresponding to a maximal biclique of G, i.e., uvT = ubv

T
b . In

that case, the objective functions of R1Nd(G) and MB(G) only differ by a constant factor,
with ||M − uvT ||2F = ||A − ubv

T
b ||2F + (mn − |E |)d2. Hence, (u, v) is globally optimal if

and only if (ub, vb) corresponds to a maximum biclique of G. ��
Corollary 1 R1N is NP-hard.

Proof This is a consequence of Theorem 2 and NP-hardness of MB(G) [15]. ��
In other words, it is NP-hard to find the best possible rank-one nonnegative approximation

of a matrix which contains negative entries. Note that if the matrix to be approximated is
nonnegative, then an optimal solution can be computed in polynomial time: this is a well-
known result combining Eckart–Young and Perron–Frobenius theorems.

Corollary 1 is closely related to the complexity of nonnegative matrix factorization (NMF),
defined as follows: given a nonnegative matrix M ∈ R

m×n+ and a factorization rank r , solve

min
ui∈Rm+,vi∈Rm+,1≤i≤r

∥
∥
∥
∥
∥

M −
r∑

i=1

uiv
T
i

∥
∥
∥
∥
∥

2

F

. (NMF)

In fact, each rank-one subproblem in NMF (i.e., finding the best uiv
T
i with respect to the

corresponding residual M −∑
k =i ukv

T
k � 0) is a R1N problem. We refer the reader to

[7, Ch. 5] and [8] for more information on the link between R1N and NMF.

3.4 Stationary points of R1Nd(G)

In this section, we focus on stationary points of R1Nd(G): we show how they are related to
the feasible solutions of MB(G). These results, combined with the ones above, will be used
in Sect. 4 to design a new type of biclique finding algorithm.
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3.4.1 Stationarity of maximal bicliques

The next theorem states that, for d ≥ max(m, n), the only nontrivial feasible solutions of
MB(G) that are stationary points of R1Nd(G) are the maximal bicliques, i.e., B(G) =
Sd(G) ∩ F(G).

Theorem 3 If G is a bipartite graph with at least one edge and d ≥ max(m, n), then
B(G) = F(G) ∩ Sd(G).

Proof Let us show that uvT ∈ B(G) if and only if uvT ∈ F(G) and uvT ∈ Sd(G). Let
then uvT ∈ B(G) and let us assume without loss of generality that u and v are binary. By
definition, uvT belongs to B(G) if and only if uvT belongs to F(G) and is maximal, i.e.,

(*) �i such that ui = 0 and M(i, j) = 1,∀ j s.t. v j = 1,

(**) � j such that v j = 0 and M(i, j) = 1,∀i s.t. ui = 1.

Noting L = supp(v), we have

v j = ||v||1|L| = 1, ∀ j ∈ L .

Moreover we have d ≥ max(m, n) so that (*) is equivalent to

� i such that ui = 0 and M(i, :)v > 0.

Therefore, either ui = 0 and M(i, :)v ≤ 0, or ui = 1 = ||v||1|L| = M(i,:)v
||v||22

. These are exactly the

stationarity conditions for u, cf. Eq. (6). By symmetry, (**) is equivalent to the stationarity
conditions for v, so that we can conclude that uvT ∈ B(G) if and only if uvT ∈ F(G) and
uvT ∈ Sd(G). ��

3.4.2 Limit points of Sd(G)

It would be interesting to have the opposite affirmation: for d sufficiently large, does any
stationary point of R1Nd(G) correspond to a maximal biclique of MB(G)? Unfortunately,
we will see later that this property does not hold. However, as d goes to infinity, we now show
that the points in Sd(G) get closer to feasible solutions of MB(G), see Theorem 4 below.

Lemma 4 For any bipartite graph G and d ≥ 0, the set Sd(G) is bounded; in fact, ∀uvT ∈
Sd(G):

||uvT ||2 = ||u||2||v||2 ≤
√|E |.

Proof For any uvT ∈Sd(G), we have by (6)

||u||2 =
∥
∥
∥
∥
∥

max

(

0,
MT v

||v||22

)∥
∥
∥
∥
∥

2

≤ ||max(0, MT )v||2
||v||22

≤ ||max(0, MT )||F
||v||2 =

√|E |
||v||2 .

��
Lemma 5 For any bipartite graph G and uvT ∈ Sd(G), if Mi j = −d and (uv)i j > 0, we
have

0 < ui <
||u||1
d + 1

and 0 < v j <
||v||1
d + 1

.
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Proof By optimality condition (6), we have

0 < v j ||u||22 = M(:, j)T u ≤ ||u||1 − (d + 1)ui ⇒ 0 < ui <
||u||1
d + 1

.

The corresponding result for v is obtained similarly. ��
Theorem 4 For any bipartite graph G, as d goes to infinity, every stationary point of
R1Nd(G) gets arbitrarily close to some feasible solutions of MB(G), i.e., ∀ε > 0, ∃D s.t.
∀d > D:

min
ubvT

b ∈F(G)

||uvT − ubv
T
b ||F < ε, ∀uvT ∈ Sd(G). (9)

Proof Let G be a bipartite graph, and A be its biadjacency matrix. Let uvT ∈ Sd(G). Without
loss of generality, we assume that uvT >0; otherwise, we consider the subproblem with the
vectors u(K ) and v(L) where K (resp. L) is the support of u (resp. v) and the graph G ′
corresponding to the biadjacency matrix A(K , L). In fact, it is clear that if (u(K ), v(L)) is
close to a feasible solution of MB(G ′), then (u, v) is for MB(G). We also assume without
loss of generality that ||v||2 = 1 (this is because uvT ∈ Sd ⇒

(
λu 1

λ
vT

) ∈ Sd ,∀λ > 0).
Lemma 4 implies that ||u||2 ≤ √|E |. By optimality condition (6),

u = Mv and v = MT u

||u||22
. (10)

Therefore, (u/||u||2, v)>0 is a pair of singular vectors of M associated with the singular value

||u||2 > 0. If M = 1m×n , the only pair of positive singular vectors of M is
(

1√
m

1m, 1√
n

1n

)

so that uvT = M coincides with a feasible solution of MB(G).
Otherwise, when M = 1m×n , we define

I =
{

i
∣
∣
∣ Mi j = 1, ∀ j

}
and J =

{
j
∣
∣
∣ Mi j = 1, ∀i

}
, (11)

and their complements Ī = {1, 2, . . . , m}\I, J̄ = {1, 2, . . . , n}\J ; with

M(I, :) = 1|I |×n and M(:, J ) = 1m×|J |.

These two sets clearly correspond to a biclique I × J in G (since A(I, J ) = 1|I |×|J |) or,
equivalently, to a (binary) feasible solution (ū I , v̄J ) for problem MB(G), where ū I is equal
to one for indices in I and to zero otherwise (similarly for v̄J and J ). We are now going to
show that uvT gets arbitrarily close to ū I v̄

T
J as d increases, which will prove our claim.

Using Lemma 5 and the fact that ||x ||1 ≤ √n||x ||2∀x ∈ R
n , we get

0 < u( Ī ) <

√
m|E |

d + 1
1| Ā| and 0 < v( J̄ ) <

√
n

d + 1
1|B̄|. (12)

Since ||v||2 = 1 and ||u||2 ≤ √|E |, we obtain

||u( Ī )vT − 0||F = ||u( Ī )||2||v||2 <
1

d + 1

(
m

√|E |
)

, and (13)

||uv( J̄ )T − 0||F = ||u||2||v( J̄ )||2 <
1

d + 1

(
n
√|E |

)
. (14)

It remains to show that u(I )v(J )T coincides with a biclique of the (complete) graph
generated by A(I, J ) = 1|I |×|J | since u( Ī )vT and uv( J̄ )T tend to zero as d goes to infinity.
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Fig. 3 Evolution of (v1, v2)

Noting kv = ||u||1||u||22
and using Eq. (10), we get v(J ) = 1|J |×m u

||u||22
= kv 1|J |. Combining this

with Eq. (12) gives

1− | J̄ |
√

n

d + 1
< ||v||22 − ||v( J̄ )||22 = ||v(J )||22 = |J |k2

v ≤ ||v||22 = 1. (15)

Moreover, Eq. (10) also gives u(I ) = 1|I |×nv = ||v||11|I | so that

|J |kv1|I | ≤ u(I ) = (||v(J )||1 + ||v( J̄ )||1)1|I | <
(

|J |kv + | J̄ |
√

n

d + 1

)

1|I |. (16)

Finally, multiplying equation (16) by kv1T|J |, combining it with (15) and noting that we have
kv ≤ 1 since ||v||2 = 1, we obtain

(

1− | J̄ |
√

n

d + 1

)

1|I |×|J | < u(I )v(J )T <

(

1+ | J̄ |
√

n

d + 1

)

1|I |×|J |. (17)

We can conclude that uvT gets arbitrarily close to a feasible solution ū I v̄
T
J of MB(G) as d

increases; more precisely, ||uvT − ū I v̄
T
J ||F ≤ O( 1

d ). ��
Example 1 Let

A =
(

0 1
1 1

)

and M =
(−d 1

1 1

)

,

and G be the graph corresponding to the biadjacency matrix A. Clearly,

(
0 1
0 1

)

belongs to

the set H(G), i.e., it corresponds to a maximum biclique of G. By Theorem 2, for d ≥ 2, it
belongs to Gd(G), i.e., [u = (1, 1), v = (0, 1)] is a global minimum of R1Nd(G).

For any d > 1, one can check that the singular values of M are different and that the outer
product of the singular vectors associated with the second singular value is positive. Since
it is a positive stationary point of the unconstrained problem, it is also a stationary point
of R1Nd(G). As d goes to infinity, it must get closer to a biclique of MB(G) (Theorem 4).
Moreover, M is symmetric, so that the right and left singular vectors are equal to each other.
Figure 3 shows the evolution2 with respect to d of this positive singular vector (v1, v2),

2 By Wedin’s theorem (cf. matrix perturbation theory [17]), singular subspaces of M associated with a positive
singular value depend continuously on d.
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which is such that (v1 v2)
T (v1 v2) ∈ Sd(G). It converges to (0 1), which means that the

outer product of the left and right singular vectors converges to

(
0 0
0 1

)

, a biclique, i.e., a

member of F(G) (not in B(G)).

Let us define the following rounding operator:

Φ : Rm×n+ → {0, 1}m×n : X →
{

Φ(X)i j =
{

0 if Xi j ≤ 0.5
1 if Xi j > 0.5

}

1≤i≤m,1≤ j≤n
.

Corollary 2 For any bipartite graph G,

d ≥ 2max(m, n)
√|E |, (18)

and uvT ∈ Sd(G), we have Φ(uvT ) ∈ F(G).

Proof Let G be any bipartite graph and its biadjacency matrix A. The condition

max
uvT∈Sd (G)

min
ubvT

b ∈F(G)

max
i j

(
uvT − ubv

T
b

)

i j
<

1

2
,

is clearly sufficient to guarantee that rounding any stationary point of R1Nd(G) will generate
a biclique of G. Looking back at Theorem 4, one can check that this is satisfied, cf. Eqs. (13),
(14) and (17), for d given by (18). We use the fact that |E | ≥ max(m, n) can be assumed
without loss of generality, i.e., that each row and each column of A has at least one nonzero
entry. In fact, if A contains a column (resp. row) of all zeros then it can be discarded because,
for any stationary point (u, v), the corresponding entry of u (resp. v) must be equal to zero,
cf. optimality conditions (6). ��

4 Biclique finding algorithm

In this section, we present a heuristic scheme designed to find large bicliques in a given graph,
whose main iteration requires a number of operations proportional to the number of edges
|E | in the graph. It is based on the previously established links between the maximum-edge
biclique problem MB(G) and the approximate rank-one nonnegative factorization problem
R1Nd(G), see Theorems 1 and 2, and Corollary 2. We compare its performance on ran-
dom graphs and text mining datasets with that of three other algorithms requiring O(|E |)
operations per iteration, and to the heuristics applied at the root node level by Gurobi, a
commercial mixed-integer programming solver [11].

4.1 A new biclique finding algorithm

For d sufficiently large, stationary points of R1Nd(G) are close to bicliques of MB(G)
(Corollary 2). Since R1Nd(G) is a continuous optimization problem, any standard nonlinear
optimization technique can in principle be used to compute such a stationary point. One can
therefore think of applying an algorithm that finds a (good) stationary point of R1Nd(G)

in order to localize a (large) biclique of the graph generated by A (the better the stationary
point, the larger the biclique).

Of course, solving R1Nd(G) up to global optimality, i.e., finding the best stationary point,
is as hard as solving MB(G). However, one can hope that the nonlinear optimization scheme
used will converge to a relatively large biclique of G (i.e., with an objective function close
to the global optimum); this hope will be confirmed empirically later in this section.
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We choose to use a block-coordinate descent method, i.e., solve alternatively the problem
in the variable u for v fixed, then in the variable v for u fixed, since the optimal solutions
for each of these steps can be written in closed form, cf. Eq. (6). We also propose, instead
of fixing the value of parameter d to the value recommended by Corollary 2, to start with a
lower initial value d0 and gradually increase it (with a multiplicative factor γ > 1) until it
reaches an upper bound D equal to the recommended value. Convergence of the resulting
scheme, Algorithm 1, is proved in the next theorem.

Theorem 5 The Φ-rounding of every limit point of Algorithm 1 generates a biclique of G,
the bipartite graph generated by A.

Proof When an exact two-block coordinate descent is applied to an optimization problem
with a continuously differentiable objective function and a feasible domain equal to the
Cartesian product of two closed convex sets (the two blocks correspond to R

m+ and R
n+ in this

case), every limit point of the iterates is a stationary point [10].
After a finite number of steps of Algorithm 1, parameter d attains the upper bound

D = 2max(m, n)
√|E | and no longer changes, so that we can invoke this result and, using

Corollary 2, guarantee that the resulting limit points can be rounded to generate a feasible
solution of MB(G), i.e., a biclique of G. ��

Note that the normalization of u (u ← u/ max(u)) performed by Algorithm 1 at each
iteration only changes the scaling of the solution uvT and allows (u, v) to converge to binary
vectors. Also note that the stationary points of R1Nd(G) which do not correspond to maximal
bicliques are either saddle points or local maxima. In fact, Theorems 1 and 3 state that, for
d ≥ max(m, n), Ld(G) = B(G) = Sd(G) ∩ F(G). We can actually prove the following.

Theorem 6 Let (u, v) be a nontrivial saddle point of R1Nd(G) and let us note K and L
the supports of u and v, respectively. Then M(K , L) contains at least one −d entry and
(u(K ),v(L)) is a saddle point of R1U(M(K , L)).

Proof The proof is similar to the one of Theorem 1, see Appendix B. ��
Theorem 6 suggests that it is very unlikely for Algorithm 1 to converge to a biclique of G

which is not maximal: in fact, when restricted to positive entries of u and v, that is, u(K ) and
v(L), updates (19) and (20) correspond to the power method [9]. It is well-known that the
power method applied to matrix M , when initialized with a vector which is not orthogonal to

Algorithm 1 Biclique Finding Algorithm based on R1N

Require: Bipartite graph G = (V, E) described by biadjacency matrix A ∈ {0, 1}m×n , initial values
v0 ∈ R

n++, d0 > 0, and parameter γ > 1.
1: Set parameter D = 2max(m, n)

√|E | and initialize variables d ← d0, v← v0;
2: for k = 1, 2, . . . do
3:

u ← max (0, (1+ d)Av − d||v||1) (= max(0, Mv)) ; (19)
u ← u/ max(u) ;

v← max

(

0,
(1+ d)AT u − d||u||1

||u||22

)(

= max

(

0,
MT u

||u||22

))

; (20)

d ← min(γ d, D) ;
4: end for
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the singular subspace corresponding to the largest singular value of M , necessarily converges
to a singular vector associated with the largest singular value (corresponding to a global
minimum of R1U(M)). When initialized with a randomly generated vector, the probability
for the power method to converge to a saddle point is therefore equal to zero. On all the
numerical experiments we performed, Algorithm 1 never converged to a biclique which was
not maximal.

Finally, one can easily check that Algorithm 1 requires only O(|E |) operations per iter-
ation, the main cost being the computation of the matrix-vector products Av and AT u (the
rest of an iteration requiring only O(max(m, n)) operations).

4.1.1 Parameters

It is not clear a priori how the initial value d0 should be selected. We observed that it should
not be chosen too large: otherwise, the algorithm often converges to the trivial solution: the
empty biclique. In fact, in that case, the negative terms (d||v||1 and d||u||1) in (19) and (20)
will dominate, even during the initial steps of the algorithm, and the solution will be set to
zero.3

On the other hand, the algorithm with d = 0 is equivalent to the power method applied to
A ≥ 0, and then converges (under the condition stated above) to the best rank-one approxi-
mation of A. We observed that when d0 is chosen small, the iterates will in general converge
to the same solution (the one obtained when initializing the algorithm with the best rank-one
approximation of A).

In order to balance positive and negative entries in M , we found appropriate to choose an
initial value of d such that ||M+||F ≈ ||M−||F , i.e.,

d0 ≈ ||A||F√|Z | =
√
|E |
|Z | , (21)

where |Z | is the number of zero entries in A, with |E | + |Z | = mn. We chose d0 =
√ |E |
|Z |

for our tests, which appears to work well in practice.
The algorithm does not seem to be very sensitive to the multiplicative factor γ , and

selecting values around 1.1 gives good results; this value will be used for the computational
test below.

We use an a priori limit on the number of iterations as main stopping criterion. Moreover,
if the solution becomes nearly integer in the sense that

vi ≤ 0.01 or vi ≥ 0.99 for all i, and w j ≤ 0.01 or w j ≥ 0.99 for all j,

the algorithm is terminated prematurely, as it is unlikely to further modify the rounded
solution. It turns out that the algorithm converges rather fast in practice, as fewer than 50
iterations are usually required. In particular, for all runs on the synthetic datasets presented
in the next section (i.e., a total of 1,700 graphs, each initialized with 100 different randomly
generated vectors), the algorithm converged in at most 44 iterations (the average being 22.5).
The code is available at https://sites.google.com/site/nicolasgillis/code.

3 In practice, we used a safety procedure which reduces the value of d whenever u or v is set to zero and
reinitializes u and v to their previous value.
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4.2 Other algorithms in O(|E |) operations

We briefly present here two other algorithms designed to find large bicliques using O(|E |)
operations per iteration.

4.2.1 Greedy heuristic

The simplest heuristic one can imagine is to add, at each step, the vertex which is connected
to the most vertices in the other side of the bipartite graph. Once a vertex is selected, the
vertices which are not connected to the chosen vertex are deleted. The procedure is repeated
on the remaining graph until one obtains a biclique, which is necessarily maximal.

4.2.2 Motzkin–Strauss formalism

In Ding et al. [4], extend the generalized Motzkin–Strauss formalism, defined for cliques
(see Sect. 5 for more details), to bicliques. They define the optimization problem

max
x∈Fα

x ,y∈Fβ
y

xT A y, (22)

where A is the biadjacency matrix of G, Fα
x = {x ∈ R

n+|
∑n

i=1 xα
i = 1}, Fβ

y = {y ∈
R

n+|
∑n

i=1 yβ
i = 1} and 1 < α, β � 2. Multiplicative updates for this problem are then

provided:

x ←
(

x ◦ A y

xT A y

) 1
α

, y ←
(

y ◦ AT x

xT A y

) 1
β

. (MS)

This algorithm does not necessarily converge to a biclique: if α and β are not sufficiently
small, it may only converge to a dense bipartite subgraph (a bicluster). In particular, for
α = β = 2, it converges to an optimal rank-one solution of R1U(A), as Algorithm 1 does
for d = 0. For our tests, we choose α = β = 1.05 as recommended in [4]. The updates MS
have a computational cost comparable to that of Algorithm 1 (O(|E |) operations) since their
main cost is the computation of the matrix-vector products Ay and AT x .

In order to evaluate the quality of the solutions provided by this algorithm when it did not
converge to a biclique, we considered the following two different post-processing procedures
to convert a bicluster into a biclique:

1. Extract from the generated bicluster a biclique using the greedy heuristic presented above.
We will refer to this variant of the algorithm based on the MS updates post-processed
with the Greedy algorithm as Greedy MS.

2. Use the updates MS recursively on the extracted bicluster, i.e., rerun it on the positive
submatrix while decreasing the values of parameters α and β with α ← 1 + α−1

2 and

β ← 1 + β−1
2 . We will refer to this variant of the algorithm based on the MS updates

used recursively as Recursive MS.

Both variants will be tested in Sect. 4.4.

4.3 MIP root node heuristics

Besides the three O(|E |) algorithms described above, we also compare our algorithm against
the sophisticated procedures implemented at the root node level in Gurobi, a commercial
mixed-integer programming (MIP) solver [11]. Three different formulations were considered:
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1. The original formulation (1), which is a (nonconvex) binary integer program with a
quadratic objective function.

2. A convex mixed integer reformulation of (1) where a new continuous nonnegative
variable t appears as the objective function and an additional convex constraint t2 ≤
(
∑

i ui )(
∑

j v j ) is introduced. As the latter can be rewritten as 4t2+(
∑

i ui−∑
j v j )

2 ≤
(
∑

i ui +∑
j v j )

2, the resulting problem is a mixed integer binary second-order cone
problem.

3. A linear binary reformulation of (1) where each quadratic term uiv j in the objective
function is linearized. More precisely, the objective function is replaced by a sum of
binary variables si j for all pairs (i, j) such that Ai j > 0, and the corresponding linking
constraints 2si j ≤ ui + v j are introduced.

Parameters TimeLimit=1 and NodeLimit=1 were provided to the solver4 in order to
use only root node heuristics and limit the total CPU time spent to one second (which is
already more than an order of magnitude larger than what the competing O(|E |) algorithms
require, see Table 1).

Preliminary testing revealed that the convex second-order cone formulation is not com-
petitive at all, and that the results of the linear reformulation are inferior to those of the
original quadratic formulation, probably because of the large number of additional variables
introduced in the linear reformulation. Hence, in the next section, we only report results for
the original quadratic formulation.

4.4 Results

In this section, we present some numerical results for synthetic and text mining datasets. All
the experiments were performed on a desktop computer running MATLAB R2012b (64 bits)
on an Intel® CORE i5-2320 CPU @ 3GHz processor equipped with 6 Go of RAM.

4.4.1 Synthetic data

For each density (0.1, 0.3, 0.5, 0.7 and 0.9), 100 bipartite graphs with 200 vertices (100 on
each side, i.e., m = n = 100) are randomly generated (the probability that an edge belongs
to the graph is equal to the density). We then perform, for each graph, 100 runs with the same
random initializations and each algorithm is allotted a maximum of 100 iterations, except
for the greedy heuristic, which is always run until completion and only once for each graph
(since it does not require a random initialization), and the MIP heuristic, also run once with
a one-second time limit.

Table 1 gives the average computational times measured by MATLAB for the different
algorithms when tested on graphs with different densities (note that, on a multi-processor
machine, MATLAB reports the sum of the CPU times used on each processor).

We observe that

• Greedy and Algorithm 1 are the fastest algorithms. On dense graphs, for which the greedy
heuristic requires more iterations to identify a biclique, Algorithm 1 is slightly faster.
• Greedy MS and Recursive MS require roughly the same computational time on sparse

graphs and actually return the same solutions (see Fig. 5): the reason is that the MS
updates are able to identify a biclique by themselves, and no post-processing is required.

4 Additional tweaking of parameters MIPFocus, Heuristics, PreQLinearize, MIQCPMethod and
RINS did not lead to better results.
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Table 1 Average computational time for solving 100 biclique problems on 100-by-100 randomly generated
bipartite graphs, for various densities of the biadjacency matrix

Density Greedy Algorithm 1 Greedy MS Recursive MS MIP

0.05 0.19 0.19 1.06 1.07 150.5

0.1 0.22 0.16 1.16 1.16 145.8

0.15 0.21 0.19 1.18 1.20 141.4

0.2 0.19 0.22 1.18 1.18 137.1

0.3 0.23 0.20 1.19 1.22 129.4

0.4 0.17 0.21 1.21 1.25 122.5

0.5 0.25 0.25 1.24 1.37 116.6

0.6 0.28 0.29 1.24 1.52 157.7

0.7 0.23 0.30 1.31 1.79 175.4

0.8 0.42 0.33 1.43 2.23 108.2

0.85 0.51 0.33 1.57 2.67 102.8

0.9 0.62 0.34 1.74 3.82 102.7

0.95 0.82 0.36 2.02 5.26 76.0

For dense graphs, Recursive MS is slower because it recursively calls the MS updates
until it identifies a biclique (while Greedy MS only calls the greedy heuristic once).
• MIP is the slowest, as we allowed it to run for one second on each graph (also note that

the one-second time constraint provided to Gurobi applies to wall time and not total
CPU time).

Figure 4 displays the performance profile for these experiments [5], where the performance
function at ρ ≤ 1 is defined as the percentage, among all graphs and all runs, of bicliques
whose sizes (i.e., number of edges) is larger than ρ times the size the largest biclique found
by any algorithm in the corresponding graph, i.e.,

performance(ρ) = #{bicliques | size ≥ ρ × size of best biclique found}
#runs

.

On such a performance profile, the higher the curve, the better; more specifically, the left
part of the graph measures efficiency, i.e., how often a given algorithm produces the best
biclique among its peers, while the right part estimates robustness, i.e., how far from the best
non-optimal solutions are. These two aspects are also reported more quantitatively in Table 2,
which displays the value of the performance function at ρ = 1 (Efficiency, i.e., how often
a given algorithm finds a biclique with largest size) and the smallest value of ρ such that
the performance function is equal to 100 % (Robustness, i.e., the relative size of the worst
biclique found).

We observe on the performance profile that both Algorithm 1 and MS perform better than
the greedy heuristic. The variant of MS using recursive post-processing performs slightly
better than the one based on the use of the greedy heuristic. Nevertheless, Algorithm 1
generates in general better solutions: it is more efficient (16 % of its solutions are ‘optimal’,
the second best being the MS algorithms with 6 %) and more robust (all solutions are at most
a factor 0.31 away from the best solution, the second best being the greedy heuristic with
0.29). Despite the larger amount of CPU time spent, Gurobi performs on average rather
poorly on these instances.
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Fig. 4 Performance profile for random graphs (densities from 0.1 to 0.9)

Table 2 Efficiency and Robustness of the different algorithms on 100 randomly generated graphs

Greedy Algo. 1 Greedy MS Rec. MS Gurobi

All 1 %—0.29 16 %—0.31 6 %—0.17 6 %—0.17 1 %—0

Sparse 0 %—0.27 33 %—0.32 18 %—0.19 18 %—0.19 9 %—0.38

Dense 7 %—0.65 26 %—0.79 8 %—0.62 2 %—0.63 0 %—0.07

All corresponds to Fig. 4, Sparse to Fig. 5 left, and Dense Fig. 5 right

Fig. 5 Performance profiles for random graphs: sparse (left, from 0.05 to 0.2) and dense (right, from 0.8 to
0.95)

It is worth noting that the algorithms behave quite differently on sparse and dense graphs.
Using the same setting as before, Fig. 5 displays performance profiles for sparse graphs (on
the left, with densities 0.05, 0.1, 0.15 and 0.2) and dense graphs (on the right, with densities
0.8, 0.85, 0.9 and 0.95).

For sparse graphs, Algorithm 1 is the best overall performer. Both versions of MS coincide,
and the greedy heuristic performs significantly worse. The Gurobi heuristics now perform
better, especially for smaller values of ρ: they are slightly more robust than Algorithm 1 (0.38
vs. 0.32), but are still significantly less efficient (9 vs. 33 %).
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Table 3 Text mining datasets [18] (sparsity is given in %: 100× |Z |/(mn))

Data m n |E | Sparsity

Classic 7,094 41,681 223,839 99.92

Sports 8,580 14,870 1,091,723 99.14

Reviews 4,069 18,483 758,635 98.99

hitech 2,301 10,080 331,373 98.57

ohscal 11,162 11,465 674,365 99.47

la1 3,204 31,472 484,024 99.52

For dense graphs, the Gurobi heuristics seem quite ineffective (in fact, for 0.95 density,
they terminate before the one-second time limit and return a very poor solution, see Fig. 5).
Recursive MS performs slightly better than the Greedy MS (although it is slightly less effi-
cient) which performs slightly better than the greedy heuristic. Algorithm 1 performs the
best: it is more efficient as it finds the best solution in 26 % of the runs (the second best being
Greedy MS with 8 %), and it is more robust as all solutions are at most a factor 0.79 away
from the best solution (the second best being the greedy heuristic with 0.65).

4.4.2 Text datasets

If parameter D in Algorithm 1 is chosen smaller than the value recommended by Corollary 2,
the algorithm is no longer guaranteed to converge to a biclique. However, the negative entries
in M will force the corresponding entries of the solutions of R1Nd(G) to be small (cf.
Theorem 4). Therefore, instead of a biclique, one gets a dense submatrix of A, i.e., a bicluster.
Algorithm 1 can then be used as a biclustering algorithm and the density of the corresponding
submatrix will depend on the choice of parameter D between 0 and 2 max(m, n)

√|E |. We
test this approach on the six text mining datasets (with sparse matrices) described in Table 3.

Figure 6 compares Algorithms 1 and MS for varying values of their parameters: in the
Motzkin–Strauss formalism, we tested each value for α = β in the interval [1.3, 1.9] with
step size 0.025 and, for Algorithm 1, we tried D = d010x for each value of x in the interval
[3, 9] with step size 0.25 (d0 given by Eq. 21). For each value, we performed 10 runs (same
initializations for both algorithms and 500 iterations) and plotted all the non-dominated
solutions (i.e., for which no other solution has both larger size and higher density) for each
dataset.

We observe that our approach consistently generates better results since its curves dominate
the ones of the Motzkin–Strauss formalism, i.e., the biclusters it finds are denser for the same
size or larger for the same density.

Table 4 gives the average computational time for the different algorithms to computing one
bicluster for the different datasets. We observe that both algorithms spent roughly the same
computational time: the main effort per iteration of both algorithms is essentially the same
(two matrix-vector products) while a fixed number of 500 iterations is performed (no early
termination or post-processing were performed, as opposed to the experiments performed in
the previous section).

Finally, we mention that Algorithm 1 can be further enhanced in the following ways:

• It is applicable to weighted graphs, i.e., non-binary biadjacency matrices; and Theorems 1,
2 and 4 can be adapted: Lemma 2 still holds for d ≥ ||M+||F , and the lower bound
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Fig. 6 Relative size versus density for the Motzkin–Strauss formalism for biclique (MS, dashed line) and
Algorithm 1 based on R1Nd (G) (solid line). The x-axis indicates the relative sizes of the extracted clusters
(i.e., number of entries in the extracted submatrix divided by the number of entries in the original matrix)
while the y-axis indicates the density of these clusters (number of nonzero entries divided by the total number
of entries) for the text datasets of Table 3

max(m, n) on d in Theorem 1 can be replaced by max(m, n) maxi j (A), where A is the
weighted biadjacency matrix.
• It is possible to give more weight to a given side of the biclique by adding regularization

terms to the cost functions. For example, one can consider the following objective function

min
u≥0,v≥0

||M − uvT ||2F + α||u||22 + β||v||22

which our algorithm can handle after some straightforward modifications (namely, the
optimal solution for u when v is fixed can still be written in closed-form, and vice versa).
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Table 4 Average computational time in seconds spent by the different algorithms for computing one bicluster
on each text dataset

Classic Sports Reviews Hitech Ohscal La1

MS 3.97 6.23 4.81 2.27 4.81 5.24

Algorithm 1 2.39 6.81 4.89 2.13 4.57 3.74

• If A ∈ {0, 1}n×n is the adjacency matrix of a (non bipartite) graph G = (V, E) with
no self loop where V = {v1, . . . , vn}, i.e., A(i, j) = 1 ⇔ (vi , v j ) ∈ E i = j and
A(i, i) = 0 for all i , then MB(G) corresponds to the problem of identifying two dis-
joint sets of nodes where all the nodes of one set are connected by an edge to all the
nodes of the other set. In fact, MB(G) reduces to identifying the largest block of ones
in any binary matrix. Therefore, all the results of this paper apply to this particular
problem.

5 Maximum clique and Motzkin–Strauss formalism

In this last section, we show how our formulation is related to the Motzkin–Strauss formalism
for maximum clique finding.

Given a graph G, the maximum clique problem looks for a complete subgraph (i.e., a
clique) with maximum number of vertices (or equivalently with maximum number of edges,
because a clique with n vertices has

(n
2

)
edges). The optimal solution is denoted ω(G) and

called the clique number of G.
Given the adjacency matrix B of G, it was shown by Motzkin and Strauss [14] that the

following quadratic program, called Motzkin–Strauss QP,

c∗ = max
x∈Rn

xT Bx such that x ≥ 0 and eT x = ||x ||1 = 1, (23)

satisfies c∗ = (1− 1/ω(G)). Moreover, there is a close link between local maxima of (23)
and maximal cliques of G [6]. In particular, slightly modifying the problem using a quadratic
penalty (namely, setting Bii = 1

2 for all i) leads to a one-to-one correspondence between
these two sets [2].

If G is bipartite, Ding et al. extended this formalism to bicliques [3,4], see Eq. (22). They
proved that optimal solutions (x∗, y∗) of (22) such that the nonzero elements of x∗ (resp. y∗)
are equal to each other define maximal bicliques in G. However, no other theoretical guarantee
is provided, and it is not clear for example whether there is a one-to-one correspondence
between global (resp. local) minima of (22) and the maximum (resp. maximal) bicliques
of G.

We now briefly explain how our continuous formulation R1Nd(G) of MB(G) is actually
closely related to the formalism introduced by Motzkin and Strauss for the clique problem.
First, observe that R1Nd(G) can be equivalently reformulated as

q∗ = min
σ≥0,u≥0,v≥0

||M − σuvT ||2F such that ||u||2 = 1, ||v||2 = 1. (24)

Since ||M − σuvT ||2F = ||M ||2F − 2σuT Mv+ σ 2, the function ||M − σuvT ||2F is (convex)
quadratic in σ and, for any (u, v), the optimal value for σ (corresponding to the stationarity
conditions) is given by σ ∗ = max(0, uT Mv). In fact, either uT Mv is nonnegative and
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σ ∗ = uT Mv, or it is negative and σ ∗ = 0; the corresponding objective value is ||M ||2F −
max(0, uT Mv)2.

If the graph G has at least one edge (otherwise the problem is trivial since M < 0), then
M has at least one positive entry (i.e., Mi j = 1 for some i, j), implying q∗ < ||M ||2F (take
for example u = ei and v = e j , where ek is the kth column of the identity matrix, as a
feasible solution). In that case, we must then have σ ∗ = u∗T Mv∗ > 0 for any nontrivial
stationary point (σ ∗, u∗, v∗) of (24). Since ||M − σ ∗u∗v∗T ||2F = ||M ||2F − (u∗T Mv∗)2, the
triplet (σ ∗, u∗, v∗) minimizes ||M − σu∗v∗T ||2F if and only if it maximizes (u∗T Mv∗)2 or
equivalently u∗T Mv∗ since it is positive. Finally, if M has at least one positive entry, the
problem

p∗ = max
u≥0,v≥0

uT Mv such that ||u||22 = 1 and ||v||22 = 1, (25)

satisfies q∗ = ||M ||2F−(p∗)2. This problem is very similar to the Motzkin–Strauss formalism
(23), except that we now have a constraint on the �2-norm of the variables (instead of �1),
and that matrix M is not the biadjacency matrix of G (but is closely related to it, similarly as
in [2] for the clique problem).

Therefore, all results of this paper actually apply to formulation (25) above. In fact, one
can check that the first-order stationarity conditions for (25) are, up to a constant factor, the
same as for R1Nd(G), so that there is a one-to-one correspondence between global minima,
local minima and stationary points of (25) and R1Nd(G).

6 Conclusion

Given a graph G, we have proposed a new continuous characterization for the maximum-edge
biclique problem based on an approximate rank-one matrix factorization problem, namely
R1Nd(G). We proved that there is a one-to-one correspondence between the maximal (resp.
maximum) bicliques of G and the local (resp. global) minima of R1Nd(G). We also showed
that the stationary points of R1Nd(G) are close to bicliques of G. Based on these results, we
presented a heuristic biclique-finding algorithm whose iterations require O(|E |) operations
per iteration. We experimentally demonstrated its efficiency on random graphs and text
mining datasets. Finally, we showed how R1Nd(G) is closely related to the Motzkin–Strauss
formalism for cliques.

Appendix A: Proof of Theorem 1

Let us show that B(G) ⊆ Ld(G) for any d ≥ max(m, n). Let uvT ∈ B(G), with u and
v binary without loss of generality. The binary rank-one matrix uvT belongs to Ld(G) if
and only if there exists ε > 0 such that for all x ∈ B+(u, ε) and y ∈ B+(v, ε), we have
||M − uvT ||2F ≤ ||M − xyT ||2F .

Let then x ∈ B+(u, ε) and y ∈ B+(v, ε), and let us note Su, Sv, Sx and Sy the supports
of u, v, x and y, respectively. For ε < 1, since u and v are binary, we have Su ⊆ Sx

and Sv ⊆ Sy (i.e., ui = 1 ⇒ xi > 0 and v j = 1 ⇒ y j > 0). This implies that for
ε < 1, ||M − uvT ||2F ≤ ||M − xyT ||2F if and only if

||M(Sx , Sy)− u(Sx )v(Sy)
T ||2F ≤ ||M(Sx , Sy)− x(Sx )y(Sy)

T ||2F .
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Let us note S̄u = Sx\Su and S̄v = Sy\Sv . Since x ∈ B+(x, ε), there exists δu such that
x = u + εδu with ||δu||2 ≤ 1 and δu(S̄u) ≥ 0 since u(S̄u) = 0; symmetrically there exists
δv such that y = v + εδv with ||δv||2 ≤ 1 and δv(S̄v) ≥ 0.

Let us analyze the four submatrices of M(Sx , Sy) corresponding to the decomposition
Sx = Su ∪ S̄u and Sx = Su ∪ S̄u .

1. Submatrix (Su, Sv). Since M(Su, Sv) = 1|Su |×|Sv |, u(Su) = 1|Su | and v(Sv) = 1|Sv |,

e1 = ||M(Su, Sv)− x(Su)y(Sv)
T ||2F ≥ ||M(Su, Sv)− u(Su)v(Sv)

T ||2F = 0.

2. Submatrix (S̄u, S̄v). Since u(S̄u) = 0, v(S̄v) = 0 and ||M(S̄u, S̄v)||2F ≤ |S̄u ||S̄v|d2 ≤
mnd2 for d ≥ 1,

e2 = ||M(S̄u, S̄v)− x(S̄u)y(S̄v)
T ||2F = ||M(S̄u, S̄v)− ε2δu(S̄u)δv(S̄v)

T ||2F
||δu(S̄u)δv(S̄v)

T ||2F .

In fact, recall that ||A−B||2F = ||A||2F−2
∑

i j Ai j Bi j+||B||2F ≥ ||A||2F−2||A||F ||B||F .

3. Submatrix (Su, S̄v). Since u(Su) = 1|Su |, v(S̄v) = 0|S̄v |, d ≥ 1 and ε < 1,

e3 = ||M(Su, S̄v)− x(Su)y(S̄v)
T ||2F

= ||M(Su, S̄v)− ε(1|Su | + εδu(Su))δv(S̄v)
T ||2F

= ||M(Su, S̄v)− ε1|Su |δv(S̄v)
T − ε2δu(Su)δv(S̄v)

T ||2F
≥ ||M(Su, S̄v)− ε1|Su |δv(S̄v)

T ||2F − 2
√

mn(d + 1)ε2||δu(Su)δv(S̄v)
T ||F .

In fact, one can check that |M(Su, S̄v) − ε1|Su |δv(S̄v)
T | ≤ d + 1 for ε < 1 since

|δv(S̄v)| ≤ 1 implying that ||M(Su, S̄v)− ε1|Su |δv(S̄v)
T ||2F ≤ mn(d + 1)2.

Because (u, v) corresponds to a maximal biclique, there must be at least one −d entry
in each column of M(Su, S̄v). Let us analyze each column separately. For any i ∈ S̄v , let
us note ni ≥ 1 the number of −d entry in the column M(Su, i). We have

||M(Su, i)− ε1|Su |δv(i)||2F = ni (−d − εδv(i))2 + (|Su | − ni )(1− εδv(i))2

≥ ni d
2 + (|Su | − ni )+ 2εδv(i)(ni d − |Su | + ni )

= ||M(Su, i)||2F + 2εδv(i)(ni d + ni − |Su |)
≥ ||M(Su, i)||2F + 2εδv(i).

In fact, ni d ≥ d ≥ max(m, n) ≥ |Su | (it is then actually sufficient to take d >

max(m, n) − 1). Finally, recalling that δv(S̄v) ≥ 0 and summing on index i ∈ S̄v ,
we obtain

e3 ≥ ||M(Su, S̄v)− u(Su)v(S̄v)
T ||2F + 2ε||δv(S̄v)||1

−2
√

mn(d + 1)ε2||δu(Su)δv(S̄v)
T ||F .

4. Submatrix (S̄u, Sv). By symmetry, the same can be done as for the submatrix (Su, S̄v),
and we have

e4 = ||M(S̄u, Sv)− x(S̄u)y(Sv)
T ||2F

≥ ||M(S̄u, Sv)− u(S̄u)v(Sv)
T ||2F + 2ε||δu(S̄u)||1

−2
√

mn(d + 1)ε2||δu(Su)δv(S̄v)
T ||F .
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Combining the above results and noting C = 2
√

mn(d + 1), we have

eT = e1 + e2 + e3 + e4

= ||M(Sx , Sy)− x(Sx )y(Sy)
T ||2F

≥ ||M(Sx , Sy)− u(Sx )u(Sy)
T ||2F + 2ε||δu(S̄u)||1 + 2ε||δv(S̄v)||1

−Cε2||δu(S̄u)δv(S̄v)
T ||2F − Cε2(||δu(S̄u)δv(Sv)

T ||2F + ||δu(Su)δv(S̄v)
T ||2F ).

Recalling that ||x ||1 ≥ ||x ||2 for any x ∈ R
n, ||xyT ||F = ||x ||2||y||2 for any x ∈ R

n and
y ∈ R

m , and that ||δu||2 ≤ 1 and ||δv||2 ≤ 1, we have that for any 0 < ε < 1
C

eT ≥ ||M(Sx , Sy)− u(Sx )u(Sy)
T ||2F

+ε||δu(S̄u)||
1
2
2

(

2− Cε||δu(S̄u)||
1
2
2 ||δv(S̄v)

T ||2 − Cε||δu(S̄u)||
1
2
2 ||δv(Sv)

T ||2
)

+ε||δv(S̄v)||
1
2
2

(

2− Cε||δv(S̄v)||
1
2
2 ||δu(S̄u)T ||2 − Cε||δv(S̄v)||

1
2
2 ||δu(Su)T ||2

)

≥ ||M(Sx , Sy)− u(Sx )u(Sy)
T ||2F + 2ε(1− Cε)(||δu(S̄u)||

1
2
2 + ||δv(S̄v)||

1
2
2 )

≥ ||M(Sx , Sy)− u(Sx )v(Sy)
T ||2F .

Finally, for any d ≥ max(m, n), uvT ∈ B(G), 0 < ε < 1
2mn(d+1)2 , x ∈ B+(u, ε) and

y ∈ B+(v, ε), we have ||M − uvT ||2F ≤ ||M − xyT ||2F .

Appendix B: Proof of Theorem 6

Let (u, v) be a nontrivial saddle point of R1Nd(G) (hence uvT ∈ Sd(G)). Let us denote the
(non-empty) support of u as K = supp(u) and the (non-empty) support of v as L = supp(v),
and define u′ = u(K ), v′ = v(L) and M ′ = M(K , L) to be the subvectors and submatrix
with indexes in K , L and K × L , respectively. Let us also define G ′ as the bipartite graph
whose biadjacency matrix is given by A(K , L).

Observe that (u′, v′) must be a saddle point of R1N(G ′) otherwise (u, v) would not be
a saddle point of R1Nd(G). In fact, the objective functions of these two problems differ
only by a constant factor: we have ||M − uv||2F = ||M ′ − u′v′T ||2F + ||M ||2F − ||M ′||2F . By
stationarity of (u, v), Eq. (6) gives

u′ = M ′v′

||v′||22
and v′ = M ′T u′

||u′||22
.

Therefore, (u′/||u′||2, v′/||v′||2) > 0 defines a pair of singular vectors of M ′ associated with
the singular value ||u′||2||v′||2 > 0.

If M ′ does not contain any −d entries, then (u′, v′) = (1|K |, 1|L|) is the unique pair
of positive singular vectors (up to a constant factor). We then have that uvT ∈ F(G). By
Theorem 3, uvT ∈ B(G) = Ld(G) is then a local minima since F(G) ∩ Sd(G) = B(G) =
Ld(G) for any d ≥ max(m, n), a contradiction.

Therefore M ′ contains at least one −d entry. By Lemma 2, any pair of singular vectors
of M ′ associated with the largest singular value of M ′ must contain a least one non-positive
entry. Therefore, (u′, v′) is a pair of positive singular vectors of M ′ not associated with the
largest singular value of M ′, i.e., it is a saddle point of R1U(M ′).

An example of such a saddle point is given in Example 1.
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